Yetter-drinfeld Modules over Weak Bialgebras
نویسنده
چکیده
We discuss properties of Yetter-Drinfeld modules over weak bialgebras over commutative rings. The categories of left-left, left-right, right-left and right-right Yetter-Drinfeld modules over a weak Hopf algebra are isomorphic as braided monoidal categories. Yetter-Drinfeld modules can be viewed as weak Doi-Hopf modules, and, a fortiori, as weak entwined modules. If H is finitely generated and projective, then we introduce the Drinfeld double using duality results between entwining structures and smash product structures, and show that the category of Yetter-Drinfeld modules is isomorphic to the category of modules over the Drinfeld double. The category of finitely generated projective Yetter-Drinfeld modules over a weak Hopf algebra has duality.
منابع مشابه
ar X iv : m at h / 04 09 59 9 v 3 [ m at h . Q A ] 1 A pr 2 00 5 YETTER - DRINFELD MODULES OVER WEAK BIALGEBRAS
We discuss properties of Yetter-Drinfeld modules over weak bialgebras over commutative rings. The categories of left-left, left-right, right-left and right-right Yetter-Drinfeld modules over a weak Hopf algebra are isomorphic as braided monoidal categories. Yetter-Drinfeld modules can be viewed as weak Doi-Hopf modules, and, a fortiori, as weak entwined modules. If H is finitely generated and p...
متن کاملYetter-drinfeld Modules over Weak Hopf Algebras and the Center Construction
We introduce Yetter-Drinfeld modules over a weak Hopf algebra H, and show that the category of Yetter-Drinfeld modules is isomorphic to the center of the category of H-modules. The categories of left-left, left-right, right-left and right-right Yetter-Drinfeld modules are isomorphic as braided monoidal categories. Yetter-Drinfeld modules can be viewed as weak DoiHopf modules, and, a fortiori, a...
متن کامل3 More Properties of Yetter - Drinfeld Modules over Quasi - Hopf Algebras
We generalize various properties of Yetter-Drinfeld modules over Hopf algebras to quasi-Hopf algebras. The dual of a finite dimensional Yetter-Drinfeld module is again a Yetter-Drinfeld module. The algebra H 0 in the category of Yetter-Drinfeld modules that can be obtained by modifying the multiplication in a proper way is quantum commutative. We give a Structure Theorem for Hopf modules in the...
متن کاملOn Pointed Hopf Algebras with Classical Weyl Groups
Many cases of infinite dimensional Nichols algebras of irreducible YetterDrinfeld modules over classical Weyl groups are found. It is proved that except a few cases Nichols algebras of reducible Yetter-Drinfeld modules over classical Weyl groups are infinite dimensional. Some finite dimensional Nichols algebras of Yetter-Drinfeld modules over classical Weyl groups are given.
متن کاملOn Lie Algebras in the Category of Yetter - Drinfeld Modules
The category of Yetter-Drinfeld modules YD K over a Hopf algebra K (with bijektive antipode over a field k) is a braided monoidal category. If H is a Hopf algebra in this category then the primitive elements of H do not form an ordinary Lie algebra anymore. We introduce the notion of a (generalized) Lie algebra in YD K such that the set of primitive elements P (H) is a Lie algebra in this sense...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005